Action potential-independent release of glutamate by Ca2+ entry through presynaptic P2X receptors elicits postsynaptic firing in the brainstem autonomic network.
نویسندگان
چکیده
P2X receptors are ATP-gated channels permeable to cations including Ca(2+). In acute slices containing the nucleus of the solitary tract, in which neuronal ATP release and ATP-elicited physiological responses are demonstrated in vivo, we recorded spontaneous action potential-independent EPSCs [miniature EPSCs (mEPSCs)]. Activation of presynaptic P2X receptors with alpha,beta-methylene ATP (alphabetamATP) triggered Ca(2+)-dependent glutamate release that was resistant to blockade of voltage-dependent calcium channels but abolished by P2X receptor antagonists. mEPSCs elicited with alphabetamATP were of larger amplitude than basal mEPSCs and resulted in postsynaptic firing caused by temporal summation of miniature events. The large-amplitude mEPSCs provoked by alphabetamATP were likely to result from highly synchronized multivesicular release of glutamate at single release sites. Neither alphabetamATP nor ATP facilitated GABA release. We conclude that this facilitated release and consequent postsynaptic firing underlie the profound autonomic responses to activation of P2X receptors observed in vivo.
منابع مشابه
Mechanisms of prolonged presynaptic Ca2+ signaling and glutamate release induced by TRPV1 activation in rat sensory neurons.
Transient receptor potential vanilloid receptor 1 (TRPV1)-mediated release of neuroactive peptides and neurotransmitters from the peripheral and central terminals of primary sensory neurons can critically contribute to nociceptive processing at the periphery and in the CNS. However, the mechanisms that link TRPV1 activation with Ca2+ signaling at the release sites and neurosecretion are poorly ...
متن کاملSelective inhibition of spontaneous but not Ca2+ -dependent release machinery by presynaptic group II mGluRs in rat cerebellar slices.
Two main forms of neurotransmitter release are known: action potential-evoked and spontaneous release. Action potential-evoked release depends on Ca2+ entry through voltage-gated Ca2+ channels, whereas spontaneous release is thought to be Ca2+ -independent. Generally, spontaneous and action potential-evoked release are believed to use the same release machinery to release neurotransmitter. This...
متن کاملModulation of Presynaptic Store Calcium Induces Release of Glutamate and Postsynaptic Firing
Action potential-independent transmitter release is random and produces small depolarizations in the postsynaptic neuron. This process is, therefore, not thought to play a significant role in impulse propagation across synapses. Here we show that calcium flux through presynaptic neuronal nicotinic receptors leads to mobilization of store calcium by calcium-induced calcium release. Recruitment o...
متن کاملSynergistic Release of Ca2+ from IP3-Sensitive Stores Evoked by Synaptic Activation of mGluRs Paired with Backpropagating Action Potentials
Increases in postsynaptic [Ca2+]i can result from Ca2+ entry through ligand-gated channels or voltage-gated Ca2+ channels, or through release from intracellular stores. Most attention has focused on entry through the N-methyl-D-aspartate (NMDA) receptor in causing [Ca2+]i increases since this pathway requires both presynaptic stimulation and postsynaptic depolarization, making it a central comp...
متن کاملRetroinhibition of presynaptic Ca2+ currents by endocannabinoids released via postsynaptic mGluR activation at a calyx synapse.
We investigated the mechanisms by which activation of group I metabotropic glutamate receptors (mGluRs) and CB1 cannabinoid receptors (CB1Rs) leads to inhibition of synaptic currents at the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB) of the rat auditory brainstem. In approximately 50% of the MNTB neurons tested, activation of group I mGluRs by the specific agonist (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 12 شماره
صفحات -
تاریخ انتشار 2004